CS20: TensorFlow for Deep Learning Research

Lecture 12 (2/23/2014) Machine Translation, Sequence-to-sequence and Attention

Slides courtesy of <u>CS22N</u>

Assignment 3

- Chat bot
- Language model
- Word vector transformation
- Project of choice

Today we will:

• Introduce a <u>new task</u>: Machine Translation

is the primary use-case of

• Introduce a <u>new neural architecture</u>: sequence-to-sequence

is improved by

• Introduce a <u>new neural technique</u>: attention

Machine Translation

<u>Machine Translation (MT)</u> is the task of translating a sentence x from one language (the source language) to a sentence y in another language (the target language).

x: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

1950s: Early Machine Translation

Machine Translation research began in the early 1950s.

 Mostly Russian → English (motivated by the Cold War!)

Source: https://youtu.be/K-HfpsHPmvw

- Systems were mostly rule-based, using a bilingual dictionary to map Russian words to their English counterparts
 - A cool by-product: Quicksort!

- <u>Core idea</u>: Learn a probabilistic model from data
- Suppose we're translating French \rightarrow English.
- We want to find best English sentence y, given French sentence x

$$\operatorname{argmax}_{y} P(y|x)$$

 Use Bayes Rule to break this down into two components to be learnt separately:

- <u>Question</u>: How to learn translation model P(x|y) ?
- First, need large amount of parallel data (e.g. pairs of human-translated French/English sentences)

- <u>Question</u>: How to learn translation model P(x|y) ?
- First, need large amount of parallel data (e.g. pairs of human-translated French/English sentences)
- Break it down further: we actually want to consider

where *a* is the alignment, i.e. word-level correspondence between French sentence *x* and English sentence *y*

What is alignment?

Alignment is the correspondence between particular words in the translated sentence pair.

• Note: Some words have no counterpart

Alignment is complex

Alignment can be one-to-many (these are "fertile" words)

Alignment is complex

	Le	reste	appartenait	aux	autochtones	
The						
balance						
was						
the						
te rrito ry						
of						
the						
o o rig in a l						
people						

.

Alignment is complex

Alignment can be many-to-many (phrase-level)

Searching for the best translation

Searching for the best translation

- SMT is a huge research field
- The best systems are extremely complex
 - Hundreds of important details we haven't mentioned here
 - Systems have many separately-designed subcomponents
 - Lots of feature engineering
 - Need to design features to capture particular language phenomena
 - Require compiling and maintaining extra resources
 - Like tables of equivalent phrases
 - Lots of human effort to maintain
 - Repeated effort for each language pair!

2014

(dramatic reenactment)

What is Neural Machine Translation?

- Neural Machine Translation (NMT) is a way to do Machine Translation with a *single neural network*
- The neural network architecture is called sequence-to-sequence (aka seq2seq) and it involves *two* RNNs.

Neural Machine Translation (NMT)

Neural Machine Translation (NMT)

- The sequence-to-sequence model is an example of a **Conditional Language Model**.
 - Language Model because the decoder is predicting the next word of the target sentence *y*
 - Conditional because its predictions are *also* conditioned on the source sentence x
- NMT directly calculates P(y|x):

 $P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots, P(y_T|y_1, \dots, y_{T-1}, x)$

Probability of next target word, given target words so far and source sentence x

- **<u>Question</u>**: How to train a NMT system?
- <u>Answer</u>: Get a big parallel corpus...

Training a Neural Machine Translation system

Decoder RNN

Better-than-greedy decoding?

• We showed how to generate (or "decode") the target sentence by taking argmax on each step of the decoder

- This is greedy decoding (take most probable word on each step)
- Problems?

Better-than-greedy decoding?

- Greedy decoding has no way to undo decisions!
 - les pauvres sont démunis (the poor don't have any money)
 - \rightarrow the ____
 - \rightarrow the poor _____
 - \rightarrow the poor are _____
- Better option: use beam search (a search algorithm) to explore several hypotheses and select the best one

Beam search decoding

- Ideally we want to find *y* that maximizes $P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots, P(y_T|y_1, \dots, y_{T-1}, x)$
- We could try enumerating all $y \rightarrow$ too expensive!
 - Complexity $O(V^T)$ where V is vocab size and T is target sequence length
- <u>Beam search</u>: On each step of decoder, keep track of the k most probable partial translations
 - *k* is the beam size (in practice around 5 to 10)
 - Not guaranteed to find optimal solution
 - But much more efficient!

Beam size = 2

<START>

Beam size = 2

Beam size = 2

Beam size = 2

Advantages of NMT

Compared to SMT, NMT has many advantages:

- Better performance
 - More fluent
 - Better use of context
 - Better use of phrase similarities
- A single neural network to be optimized end-to-end
 - No subcomponents to be individually optimized
- Requires much less human engineering effort
 - No feature engineering
 - Same method for all language pairs

Disadvantages of NMT?

Compared to SMT:

- NMT is less interpretable
 - Hard to debug
- NMT is difficult to control
 - For example, can't easily specify rules or guidelines for translation
 - Safety concerns!

Disadvantages of NMT?

Compared to SMT:

- NMT is less interpretable
 - Hard to debug
- NMT is difficult to control
 - For example, can't easily specify rules or guidelines for translation
 - Safety concerns!

SMT is still very much in use!

How do we evaluate Machine Translation?

BLEU (Bilingual Evaluation Understudy)

- BLEU compares the <u>machine-written translation</u> to one or several <u>human-written translation(s)</u>, and computes a <u>similarity</u> score based on:
 - *n*-gram precision (usually up to 3 or 4-grams)
 - Penalty for too-short system translations
- BLEU is useful but imperfect
 - There are many valid ways to translate a sentence
 - So a good translation can get a poor BLEU score because it has low *n*-gram overlap with the human translation S

Beyond BLEU

- Its own area of research
- Thought: metric without reference texts

MT progress over time

[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]

Source: http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf

BLEU Score

Data data data

Source: DeepL's press release (Aug 2017)

NMT: the biggest success story of NLP Deep Learning

Neural Machine Translation went from a fringe research activity in **2014** to the leading standard method in **2016**

- **2014**: First seq2seq paper published
- **2016**: Google Translate switches from SMT to NMT
- This is amazing!
 - SMT systems, built by hundreds of engineers over many years, outperformed by NMT systems trained by a handful of engineers in a few months

- Nope!
- Many difficulties remain:
 - Out-of-vocabulary words
 - Domain mismatch between train and test data
 - Maintaining context over longer text
 - Low-resource language pairs

- Nope!
- Using common sense is still hard

Open in Google Translate

Feedback

- Nope!
- NMT picks up biases in training data

Didn't specify gender

Source: https://hackernoon.com/bias-sexist-or-this-is-the-way-it-should-be-ce1f7c8c683c

- Nope!
- Uninterpretable systems do strange things

English	Spanish	Japanese	Detect language	•	English	Spanish	Arabic	•	Translate
が ががが ががが ががが ががが ががが ががが	が ががが ががががが ががががが ががががが ががががが	が ががが ががががが ががががか ががががか	ヾ ヾか ヾがが		But Peel A pain i I feel a My ston Strange Strange Having My bad Strong I Strong I There w It is pro Strong I	s strange f nach feeling a bad ap gray but burns but burns vas a bac ne to bur but burnis	eeling opearand s d shape ms, but shed	ce but a also a	a bad shape a burn
ימימינד	ימימימינ	מימימינו	ימימימי						

Source: http://languagelog.ldc.upenn.edu/nll/?p=35120#more-35120

Google Translate: 0

Google Translate vs DeepL (2/23/2018)

DeepL: 0

	Translate from English (detected) 🗸		Translate into Spanish 🗸
English	×		inglés
		>	

Google Translate: 0

So what if I don't know what Armageddon means? It's $^{\times}$ not the end of the world.	Entonces, ¿qué pasa si no sé lo que significa Armageddon? No es el fin del mundo.
 ♣ ■ ▼ 77/5000 	☆ 🗋 ♦) ≺ Suggest an edit

X

DeepL: 0

So what if I don't know what Armageddon means? It's not the end of the world.

¿Y qué si no sé lo que significa el <u>Armagedón</u>? No es el fin del mundo.

Google Translate: 0

What's the difference between in-laws and outlaws? × Outlaws are wanted.		¿Cuál es la diferencia entre parientes políticos y fuera de la ley? Se quieren forajidos.				
	5000	☆ □ ● ペ	🖋 Suggest an edit			

>

X

DeepL: 0

What's the difference between in-laws and outlaws?

Outlaws are wanted.

¿Cuál es la diferencia entre suegros y forajidos? Se buscan forajidos.

Google Translate: 0

I told my girlfriend she drew her eyebrows too high. × She seemed surprised.	Le dije a mi novia que ella enarcó las cejas demasiado alto. Ella pareció sorprendida.
◆ ● ■ ▼ 74/5000	☆ 🗋 ♠) < Suggest an edit

X

DeepL: 0

I told my girlfriend she drew her eyebrows too high. She seemed surprised. Le dije a mi novia que dibujó sus cejas muy altas. Parecía sorprendida.

Google Translate: 0

Communism jokes aren't funny unless everyone gets \times them.	Las bromas del comunismo no son divertidas a menos que todos las reciban.
◆ ♥ ■ ▼ 55/5000	🕆 🗋 🌒 < 🖉 Suggest an edit

DeepL: 0

× Communism jokes aren't funny unless everyone gets them.

Las bromas del comunismo no son graciosas a menos que todos las entiendan.

Google Translate: 0

Sorry losers and haters, but my I.Q. is one of the highest -and you all know it! Please don't feel so stupid or insecure, it's not your fault

140/5000

×

Lo siento perdedores y enemigos, pero mi I.Q. es uno de los más altos, ¡y todos lo saben! Por favor, no te sientas tan estúpido o inseguro, no es tu culpa

☆ □ •) <

🖋 Suggest an edit

DeepL: 0

• 🕛 🔳 🔻

Sorry losers and haters, but my I.Q. is one of the highest -and you all know it! Please don't feel so stupid or <u>insecure,it's</u> not your fault Lo siento perdedores y odiosos, pero mi coeficiente intelectual. es uno de los más altos - y todos ustedes lo saben! Por favor no te sientas tan estúpido o inseguro, no es tu culpa.

NMT research continues

NMT is the **flagship task** for NLP Deep Learning

- NMT research has pioneered many of the recent innovations of NLP Deep Learning
- In **2018**: NMT research continues to thrive
 - Researchers have found *many, many* improvements to the "vanilla" seq2seq NMT system we've presented today
 - But one improvement is so integral that it is the new vanilla...

ATTENTION

Sequence-to-sequence: the bottleneck problem

Problems with this architecture?

Sequence-to-sequence: the bottleneck problem

Attention

- Attention provides a solution to the bottleneck problem.
- <u>Core idea</u>: on each step of the decoder, *focus on a particular part* of the source sequence

Decoder RNN

Use the attention distribution to take a **weighted sum** of the encoder hidden states.

The attention output mostly contains information the hidden states that received high attention.

Decoder RNN

Decoder RNN

Attention: in equations

- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$
- We get the attention scores e^t for this step:

$$\boldsymbol{e}^t = [\boldsymbol{s}_t^T \boldsymbol{h}_1, \dots, \boldsymbol{s}_t^T \boldsymbol{h}_N] \in \mathbb{R}^N$$

• We take softmax to get the attention distribution α^t for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

• We use α^t to take a weighted sum of the encoder hidden states to get the attention output a_t

$$\boldsymbol{a}_t = \sum_{i=1}^{N} \alpha_i^t \boldsymbol{h}_i \in \mathbb{R}^h$$

• Finally we concatenate the attention output a_t with the decoder hidden state s_t and proceed as in the non-attention seq2seq model

$$[oldsymbol{a}_t;oldsymbol{s}_t]\in\mathbb{R}^{2h}$$

Attention is great

- Attention significantly improves NMT performance
 - It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
 - Provides shortcut to faraway states

Attention provides some interpretability			vres		unis
• By inspecting attention distribution, we can see		Les	pau	sont	dém
what the decoder was focusing on	─► The				
 We get alignment for free! 	poor				
 This is cool because we never explicitly trained 	don't				
an alignment system	have				
 The network just learned alignment by itself 	any				
	money				

Recap

- We learned the history of Machine Translation (MT)
- Since 2014, Neural MT rapidly replaced intricate Statistical MT

 Sequence-to-sequence is the architecture for NMT (uses 2 RNNs)

- Attention is a way to *focus on particular parts* of the input
 - Improves sequence-to-sequence a lot!

Sequence-to-sequence is versatile!

- Sequence-to-sequence is useful for *more than just MT*
- Many NLP tasks can be phrased as sequence-to-sequence:
 - Summarization (long text \rightarrow short text)
 - Dialogue (previous utterances \rightarrow next utterance)
 - Parsing (input text → output parse as sequence)
 - Code generation (natural language \rightarrow Python code)

Next class

• Transformers (guest lecture by Lukasz Kaiser)